THE THERMAL ISOMERIZATION OF 6-DIFLUOROMETHYLENEBICYCLO[3.2.0]HEPT-2-ENE William R. Dolbier, Jr., Carlos A. Piedrahita¹ and Basil H. Al-Sader² Department of Chemistry, University of Florida Gainesville, Florida 32611

<u>Summary</u>. The thermal isomerization of 6-difluoromethylenebicyclo[3.2.0]hept-2-ene proceed via two competing 1,3-sigmatropic processes, with an E_a nearly identical to that of the hydro-carbon.

Signatropic isomerizations of the 6-methylenebicyclo[3.2.0]hept-2-ene system have been examined extensively by Hasselmann.^{3,4,5} A relatively slow automerization process of 1 was

shown to compete with its isomerization to $\frac{3}{2}$, both processes proceeding ostensibly via the bis-allyl diradical 2. Hasselmann moreover demonstrated that the 1,3-sigmatropic process, wherein C-7 migrated to C-3, was somewhat preferred over the 3,3-process. He attributed this result to the reluctance, due to steric repulsions, of the allyl radical to rotate through the methylene group at C-4. This argument was subsequently enhanced by his elegant study of the methylated 6-methylenebicyclo[3.2.0]hept-2-enes.⁴

We would like to report, at this time, results from our investigation of the thermal izomcrization of 6-difluoromethylenebicyclo[3.2.0]hept-2-ene, $\frac{4}{2}$, a rearrangement which takes place exclusively via two competing 1,3-signatropic processes.

4 was prepared in 29% yield from bicyclo[3.2.0]hept-2-ene-6-one⁶ by the difluoro-Wittig process of Burton and Naae.⁷ It showed a characteristic intense IR absorption at 1740 cm^{-1} , and gave the following NMR spectra: ¹H(CCl₄) δ 5.72 (S,2H), 3.72-3.16 (m,2H), 3.10-2.72 (m,1H), 2.53 (d,2H) and 2.45-2.15 (m,1H); ¹⁹F(CCl₄) δ -16.6(TFA,ext) (AB quartet, J_{AB} = 69Hz).⁸

2957

The major observed product was 5-difluoromethylenebicyclo[2.2.1]hept-2-ene, $5,^9$ which can be formed formally via a 1,3-sigmatropic shift of C-7 to C-3, while the minor product, 7,7-difluoro-6-methylenebicyclo[3.2.0]hept-2-ene, $6,^{12}$ can be formed via the 1,3-sigmatropic shift of C-1 to C-8.

The products were formed under kinetic control as demonstrated by the consistency of the ratio of 5:6 through many half lives of the reaction. Wtih a strain energy of 30.6 kcal/mole for the bicyclo[3.2.0]heptane system versus 17.0 kcal/mole for the bicyclo[2.2.1]heptane system, ¹³ it can be seen why 5 is formed irreversibly from 4. The fact that 6 is also formed irreversibly can be understood in terms of the generally accepted, but not generally well-verified, thermodynamic affinity of fluorine substituents for sp³ hybridized carbon.

The isomerization followed good first-order kinetics throughout, with rate constants given in Table I. Arrhenius plots of the rate data gave the activation parameters in Table I.

Table I. Rate Constants for $4 \rightarrow 5 + 6$

	e 220.3	
Temp. °C 208.0 213.8 219.6 235.3	239.5	
$10^6 k_5(S^{-1})$ 23.7 39.0 63.7 232.	291.	
$10^{6} k_{6}^{\sim} (s^{-1})$ 4.08 7.00 11.3 46.	7 61.2	

Table II. Activation Parameters for $4 \rightarrow 5 + 6$

Rearrangement	LogA	Ea(kcal/mole)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.6	39.9
$4 \rightarrow 5$	13.2	39.3
4 → 6 ~ ~	13.9	42.4
$1 \rightarrow 3$	13.8	39.9

Comparison of our kinetic results with those of Hasselmann³ indicates that gem-difluoro substitution at the 8-position has not had appreciable effect on the activation parameters for isomerization of the 6-methylenebicyclo[3.2.0]hept-2-ene system. A reasonable corrollary conclusion can also be reached, that the allylic radical stabilization energy is not significantly affected by fluorine substitution. While O'Neal and Benson alluded to such a lack of effect of fluorine on radical stability in 1968,¹⁴ this comprises, to our knowledge, the first corroborative experimental probe of this effect within the context of a pericyclic process.

The fact that <u>no</u> 3,3-signatropic component is observed in this isomerization, in spite of the fact that such a product, 6,6-difluoro-5-methylenebicyclo[2.2.1]hept-2-ene, 7, should be thermodynamically more stable than $\frac{4}{2}$, $\frac{5}{2}$ or $\frac{6}{2}$, seems to be predicated by steric effects on conformational processes of the initially formed diradical 8. The <u>exclusivity</u> of 1,3-processes for conversion of 8, as compared to Hasselmann's less selective partitioning of 2, can be attributed to the significantly greater barrier for passage of the CF₂ end of the ally1 radical in 8 through the CH₂ group at C-4 than for the comparable rotation of 2.

Rather, the rotation of the C-5, C-6 bond preferentially proceeds across the face of the cyclopentenyl radical, having the opportunity to form the major product, 5, after only a 72° rotation (requiring no passage through the C-4 CH₂ group) and being able to form the minor product $\frac{6}{2}$ after a rotation of 180° requiring a passage of the allylic C-7 CH₂ group through the C-4 CH₂ group, a process which appears to have an incremental barrier of ~1.9 kcal/mole³). Formation of $\frac{7}{2}$ would, precluding the passage of the allylic CF₂ group through the C-4 CH₂ group, require a rotation of 252°. Thus its absence can be readily understood.

The investigation of the rearrangement of 4 thus enhances our understanding of the effect of fluorine as a substituent on the energetics and ultimate outcome of thermal signatropic processes.

<u>Acknowledgement</u>. Crateful acknowledgement is given to the National Science Foundation for partial support of this research.

References and Footnotes

- 1. Taken in part from the Ph.D. Dissertation of CAP, University of Florida, 1978.
- 2. On sabbatical leave from Dept. of Chemistry, College of Sci., Univ. of Baghdad, IRAQ.
- 3. D. Hasselmann, <u>Tetrahedron Lett</u>., 3739 (1973).
- 4. D. Hasselmann, Angew. Chem. internat. Edit., 14,257 (1975).
- 5. D. Hasselmann, Tetrahedron Lett., 3465 (1972).
- 6. L. Ghosez, R. Montaigne, A. Roussel, H. Vanlierde and P. Mollet, Tetrahedron, 27,615 (1971).
- 7. D. J. Burton and D. Naae, Syn. Comm., 3,197 (1973).
- 8. Exact mass of $\frac{4}{2}$ calcd for C₈H₈F₂: 142.0593, found: 142.0599.
- 9. Product 5 is identical in all ways to the previously reported product from the cycloaddition of 1,1-difluoroallene to cyclopentadiene.^{10.11} It had the intense IR absorption characteristic of a =CF₂ group at 1775 cm⁻¹, and an ¹⁹F NMR spectrum (CCl₄) at δ -15.5(ABquartet, J_{AB} = 71 Hz) and exact mass calcd for C₈H₈F₂: 142.0593, found: 142.0585.
- 10. W. H. Knoth and D. D. Coffman, J. Am. Chem. Soc., 82, 3873 (1960).
- W. R. Dolbier, Jr., C. A. Piedrahita, K. N. Houk, R. W. Strosier and R. W. Gandour, <u>Tetrahedron Lett</u>., 2231 (1978).
- 12. Product 6 is characterized by its IR, mass and NMR spectra: ¹H NMR (CC1₄), δ 5.97-5.77 (m,1H), 5.74-5.55(m,1H), 5.53-5.36 (m,1H), 5.31-5.15 (m,1H), 3.93-3.61 (m,1H), 3.30-3.09 (m,1H) and 2.83-2.23 (m,2H); ¹⁹F NMR, δ-19.7 (TFA,ext)(AB quartet, J_{AB} = 215 Hz); exact mass calcd for C₈H₈F₂: 142.0593, found: 142.0585.
- A. Greenberg and J. F. Liebman, "Strained Organic molecules, Academic Press, New York, p. 72.
- 14. H. E. O'Neal and S. W. Benson, J. Phys. Chem., 72, 1883 (1968).

(Received in USA 30 March 1979)